3.995 \(\int \frac {\sqrt {c-i c \tan (e+f x)}}{\sqrt {a+i a \tan (e+f x)}} \, dx\)

Optimal. Leaf size=41 \[ \frac {i \sqrt {c-i c \tan (e+f x)}}{f \sqrt {a+i a \tan (e+f x)}} \]

[Out]

I*(c-I*c*tan(f*x+e))^(1/2)/f/(a+I*a*tan(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {3523, 37} \[ \frac {i \sqrt {c-i c \tan (e+f x)}}{f \sqrt {a+i a \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c - I*c*Tan[e + f*x]]/Sqrt[a + I*a*Tan[e + f*x]],x]

[Out]

(I*Sqrt[c - I*c*Tan[e + f*x]])/(f*Sqrt[a + I*a*Tan[e + f*x]])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 3523

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist
[(a*c)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f,
m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {c-i c \tan (e+f x)}}{\sqrt {a+i a \tan (e+f x)}} \, dx &=\frac {(a c) \operatorname {Subst}\left (\int \frac {1}{(a+i a x)^{3/2} \sqrt {c-i c x}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {i \sqrt {c-i c \tan (e+f x)}}{f \sqrt {a+i a \tan (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.30, size = 41, normalized size = 1.00 \[ \frac {i \sqrt {c-i c \tan (e+f x)}}{f \sqrt {a+i a \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c - I*c*Tan[e + f*x]]/Sqrt[a + I*a*Tan[e + f*x]],x]

[Out]

(I*Sqrt[c - I*c*Tan[e + f*x]])/(f*Sqrt[a + I*a*Tan[e + f*x]])

________________________________________________________________________________________

fricas [B]  time = 0.41, size = 63, normalized size = 1.54 \[ \frac {\sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} {\left (i \, e^{\left (2 i \, f x + 2 i \, e\right )} + i\right )} e^{\left (-i \, f x - i \, e\right )}}{a f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-I*c*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*(I*e^(2*I*f*x + 2*I*e) + I)*e^(-I*f*x - I*
e)/(a*f)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {-i \, c \tan \left (f x + e\right ) + c}}{\sqrt {i \, a \tan \left (f x + e\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-I*c*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-I*c*tan(f*x + e) + c)/sqrt(I*a*tan(f*x + e) + a), x)

________________________________________________________________________________________

maple [A]  time = 0.38, size = 65, normalized size = 1.59 \[ -\frac {i \sqrt {-c \left (-1+i \tan \left (f x +e \right )\right )}\, \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \left (1+i \tan \left (f x +e \right )\right )}{f a \left (-\tan \left (f x +e \right )+i\right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-I*c*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(1/2),x)

[Out]

-I/f*(-c*(-1+I*tan(f*x+e)))^(1/2)*(a*(1+I*tan(f*x+e)))^(1/2)/a*(1+I*tan(f*x+e))/(-tan(f*x+e)+I)^2

________________________________________________________________________________________

maxima [A]  time = 0.76, size = 35, normalized size = 0.85 \[ \frac {i \, \sqrt {c} \sqrt {-i \, \tan \left (f x + e\right ) + 1}}{\sqrt {a} f \sqrt {i \, \tan \left (f x + e\right ) + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-I*c*tan(f*x+e))^(1/2)/(a+I*a*tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

I*sqrt(c)*sqrt(-I*tan(f*x + e) + 1)/(sqrt(a)*f*sqrt(I*tan(f*x + e) + 1))

________________________________________________________________________________________

mupad [B]  time = 0.71, size = 34, normalized size = 0.83 \[ \frac {\sqrt {c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}\,1{}\mathrm {i}}{f\,\sqrt {a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - c*tan(e + f*x)*1i)^(1/2)/(a + a*tan(e + f*x)*1i)^(1/2),x)

[Out]

((c - c*tan(e + f*x)*1i)^(1/2)*1i)/(f*(a + a*tan(e + f*x)*1i)^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {- i c \left (\tan {\left (e + f x \right )} + i\right )}}{\sqrt {i a \left (\tan {\left (e + f x \right )} - i\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-I*c*tan(f*x+e))**(1/2)/(a+I*a*tan(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(-I*c*(tan(e + f*x) + I))/sqrt(I*a*(tan(e + f*x) - I)), x)

________________________________________________________________________________________